Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612691

RESUMO

Plant annexins constitute a conserved protein family that plays crucial roles in regulating plant growth and development, as well as in responses to both biotic and abiotic stresses. In this study, a total of 144 annexin genes were identified in the barley pan-genome, comprising 12 reference genomes, including cultivated barley, landraces, and wild barley. Their chromosomal locations, physical-chemical characteristics, gene structures, conserved domains, and subcellular localizations were systematically analyzed to reveal the certain differences between wild and cultivated populations. Through a cis-acting element analysis, co-expression network, and large-scale transcriptome analysis, their involvement in growth, development, and responses to various stressors was highlighted. It is worth noting that HvMOREXann5 is only expressed in pistils and anthers, indicating its crucial role in reproductive development. Based on the resequencing data from 282 barley accessions worldwide, genetic variations in thefamily were investigated, and the results showed that 5 out of the 12 identified HvMOREXanns were affected by selection pressure. Genetic diversity and haplotype frequency showed notable reductions between wild and domesticated barley, suggesting that a genetic bottleneck occurred on the annexin family during the barley domestication process. Finally, qRT-PCR analysis confirmed the up-regulation of HvMOREXann7 under drought stress, along with significant differences between wild accessions and varieties. This study provides some insights into the genome organization and genetic characteristics of the annexin gene family in barley at the pan-genome level, which will contribute to better understanding its evolution and function in barley and other crops.


Assuntos
Hordeum , Procedimentos de Cirurgia Plástica , Hordeum/genética , Anexinas/genética , Domesticação , Produtos Agrícolas
2.
Front Endocrinol (Lausanne) ; 15: 1314214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495790

RESUMO

Successful pregnancy requires the tolerance of the maternal immune system for the semi-allogeneic embryo, as well as a synchrony between the receptive endometrium and the competent embryo. The annexin family belongs to calcium-regulated phospholipid-binding protein, which functions as a membrane skeleton to stabilize the lipid bilayer and participate in various biological processes in humans. There is an abundance of the annexin family at the maternal-fetal interface, and it exerts a crucial role in embryo implantation and the subsequent development of the placenta. Altered expression of the annexin family and dysfunction of annexin proteins or polymorphisms of the ANXA gene are involved in a range of pregnancy complications. In this review, we summarize the current knowledge of the annexin A protein family at the maternal-fetal interface and its association with female reproductive disorders, suggesting the use of ANXA as the potential therapeutic target in the clinical diagnosis and treatment of pregnancy complications.


Assuntos
Implantação do Embrião , Complicações na Gravidez , Gravidez , Feminino , Humanos , Implantação do Embrião/genética , Placenta/metabolismo , Endométrio/metabolismo , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Anexinas/genética , Anexinas/metabolismo
3.
FEBS Open Bio ; 14(4): 626-642, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408765

RESUMO

Proteins achieve their biological functions in cells by cooperation in protein complexes. In this study, we employed fluorescence lifetime imaging microscopy (FLIM)-based Förster resonance energy transfer (FRET) measurements to investigate protein complexes comprising S100A11 and different members of the annexin (ANX) family, such as ANXA1, ANXA2, ANXA4, ANXA5, and AnxA6, in living cells. Using an S100A11 mutant without the capacity for Ca2+ binding, we found that Ca2+ binding of S100A11 is important for distinct S100A11/ANXA2 complex formation; however, ANXA1-containing complexes were unaffected by this mutant. An increase in the intracellular calcium concentration induced calcium ionophores, which strengthened the ANXA2/S100A11 interaction. Furthermore, we were able to show that S100A11 also interacts with ANXA4 in living cells. The FLIM-FRET approach used here can serve as a tool to analyze interactions between S100A11 and distinct annexins under physiological conditions in living cells.


Assuntos
Anexinas , Transferência Ressonante de Energia de Fluorescência , Anexinas/genética , Anexinas/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo
4.
BMC Plant Biol ; 24(1): 78, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38287275

RESUMO

BACKGROUND: Annexin (ANN) is calcium (Ca2+)-dependent and phospholipid binding protein family, which is involved in plant growth and development and response to various stresses. However, little known about ANN genes were identified from crape myrtle, an ornamental horticultural plant widely cultivated in the world. RESULTS: Here, 9 LiANN genes were identified from Lagerstroemia indica, and their characterizations and functions were investigated in L. indica for the first time. The LiANN genes were divided into 2 subfamilies. The gene structure, chromosomal location, and collinearity relationship were also explored. In addition, the GO annotation analysis of these LiANNs indicated that they are enriched in molecular functions, cellular components, and biological processes. Moreover, transcription factors (TFs) prediction analysis revealed that bHLH, MYB, NAC, and other TFs can interact with the LiANN promoters. Interestingly, the LiANN2/4/6-9 were demonstrated to play critical roles in the branching architecture of crape myrtle. Furthermore, the LiANN2/6/8/9 were differentially expressed under salt treatment, and a series of TFs regulating LiANN2/6/8/9 expression were predicted to play essential roles in salt resistance. CONCLUSIONS: These results shed light on profile and function of the LiANN gene family, and lay a foundation for further studies of the LiANN genes.


Assuntos
Lagerstroemia , Myrtus , Lagerstroemia/genética , Anexinas/genética , Fatores de Transcrição/genética , Estresse Salino/genética , Regulação da Expressão Gênica de Plantas , Filogenia
5.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37833989

RESUMO

Differentiated thyroid cancer is the most common malignancy of the endocrine system. Although most thyroid nodules are benign, given the high incidence of thyroid nodules in the population, it is important to understand the differences between benign and malignant thyroid cancer and the molecular alterations associated with malignancy to improve detection and signal potential diagnostic, prognostic, and therapeutic targets. Proteomics analysis of benign and malignant human thyroid tissue largely revealed changes indicating modifications in RNA regulation, a common cancer characteristic. In addition, changes in the immune system and cell membrane/endocytic processes were also suggested to be involved. Annexin A1 was considered a potential malignancy biomarker and, similarly to other annexins, it was found to increase in the malignant group. Furthermore, a bioinformatics approach points to the transcription factor Sp1 as being potentially involved in most of the alterations seen in the malignant thyroid nodules.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico , Anexinas/genética , RNA Mensageiro/genética , Proteômica , Neoplasias da Glândula Tireoide/patologia
6.
Parasit Vectors ; 16(1): 350, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803469

RESUMO

BACKGROUND: Cystic echinococcosis (CE) is a life-threatening zoonotic disease caused by the larval stage of Echinococcus granulosus sensu lato, which employs various strategies to evade the host immune system for survival. Recent advances have revealed the role of annexins as excretory/secretory products, providing new insights into the immune regulation by these proteins in the pathogenesis of CE. METHODS: Echinococcus granulosus annexin B proteins EgANXB2, EgANXB18, EgANXB20, and EgANXB23 were cloned, expressed, and analyzed using bioinformatic tools. Membrane binding analysis was used to assess their bioactivity, while their immunoreactivity and tissue distribution characteristics were determined experimentally using western blotting and immunofluorescence staining, respectively. Furthermore, quantitative real-time reverse transcription PCR (qRT-PCR) was used to analyze the mRNA expression profiles of EgANXBs in different developmental stages of E. granulosus. Finally, immunofluorescence staining, cell counting kit 8 assays, flow cytometry, transwell migration assays, and qRT-PCR were used to evaluate the functional effects of rEgANXB18 and rEgANXB20 on mouse peripheral blood mononuclear cells (PBMCs). RESULTS: In this study, we identified four EgANXBs with conserved protein structures and calcium-dependent phospholipid binding activities. rEgANXBs were recognized by serum from sheep infected with E. granulosus and distributed in the germinal layer of fertile cysts. Interestingly, transcription levels of the four EgANXBs were significantly higher in protoscoleces than in 28-day strobilated worms. Moreover, we demonstrated that rEgANXB18 and rEgANXB20 were secretory proteins that could bind to PBMCs and regulate their function. Specifically, rEgANXB18 inhibited cell proliferation and migration while promoting cell apoptosis, NO production, and cytokine profile shifting. In contrast, rEgANXB20 showed limited effects on apoptosis but inhibited NO production. CONCLUSIONS: Our findings suggested that among the four identified EgANXBs, EgANXB2 and EgANXB23 might play a pivotal role for the development of protoscoleces, while EgANXB18 and EgANXB20, as secretory proteins, appeared to participate in the host-parasite interaction by regulating the function of immune cells.


Assuntos
Equinococose , Echinococcus granulosus , Doenças dos Ovinos , Animais , Camundongos , Ovinos , Anexinas/genética , Leucócitos Mononucleares/metabolismo , Equinococose/parasitologia , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo
7.
Cell Death Dis ; 14(9): 588, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666806

RESUMO

Annexin A10 (ANXA10) belongs to a family of membrane-bound calcium-dependent phospholipid-binding proteins, but its precise function remains unclear. Further research is required to understand its role in sessile serrated lesions (SSL) and colorectal cancer (CRC). We conducted transcriptome sequencing on pairs of SSL and corresponding normal control (NC) samples. Bioinformatic methods were utilized to assess ANXA10 expression in CRC. We knocked down and overexpressed ANXA10 in CRC cells to examine its effects on cell malignant ability. The effect of ANXA10 on lung metastasis of xenograft tumor cells in nude mice was also assessed. Furthermore, we used quantitative polymerase chain reaction, western blotting, and flow cytometry for reactive oxygen species (ROS), lipid ROS, and intracellular Fe2+ to measure ferroptosis. Immunoblotting and Immunofluorescence staining were used to detect autophagy. We found that ANXA10 was significantly overexpressed in SSL compared to NC. ANXA10 was also highly expressed in BRAF mutant CRCs and was associated with poor prognosis. ANXA10 knockdown reduced the survival, proliferation, and migration ability of CRC cells. Knockdown of ANXA10 inhibited lung metastasis of CRC cells in mice. ANXA10 knockdown increased transferrin receptor (TFRC) protein levels and led to downregulation of GSH/GSSG, increased Fe2+, MDA concentration, and ROS and lipid ROS in cells. Knockdown of ANXA10 inhibited TFRC degradation and was accompanied by an accumulation of autophagic flux and an increase in SQSTM1. Finally, Fer-1 rescued the migration and viability of ANXA10 knockdown cell lines. In brief, the knockdown of ANXA10 induces cellular ferroptosis by inhibiting autophagy-mediated TFRC degradation, thereby inhibiting CRC progression. This study reveals the mechanism of ANXA10 in ferroptosis, suggesting that it may serve as a potential therapeutic target for CRC of the serrated pathway.


Assuntos
Neoplasias Colorretais , Ferroptose , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Transferrina , Ferroptose/genética , Camundongos Nus , Espécies Reativas de Oxigênio , Receptores da Transferrina/genética , Autofagia/genética , Neoplasias Pulmonares/genética , Proteínas de Membrana , Neoplasias Colorretais/genética , Lipídeos , Anexinas/genética
8.
ACS Chem Neurosci ; 14(15): 2583-2589, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37433222

RESUMO

Mutations in the proline-rich domain (PRD) of annexin A11 are linked to amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, and generate abundant neuronal A11 inclusions by an unknown mechanism. Here, we demonstrate that recombinant A11-PRD and its ALS-associated variants form liquidlike condensates that transform into ß-sheet-rich amyloid fibrils. Surprisingly, these fibrils dissolved in the presence of S100A6, an A11 binding partner overexpressed in ALS. The ALS variants of A11-PRD showed longer fibrillization half-times and slower dissolution, even though their binding affinities for S100A6 were not significantly affected. These findings indicate a slower fibril-to-monomer exchange for these ALS variants, resulting in a decreased level of S100A6-mediated fibril dissolution. These ALS-A11 variants are thus more likely to remain aggregated despite their slower fibrillization.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Anexinas/genética , Solubilidade , Amiloide/metabolismo , Prolina/genética , Proteína A6 Ligante de Cálcio S100 , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo
9.
BMC Cancer ; 23(1): 674, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464398

RESUMO

BACKGROUND: Annexins are a family of proteins involved in a wide variety of cellular processes such as inflammation, proliferation, differentiation, apoptosis, migration and membrane repair. However, the role of most Annexins in renal cell carcinoma (RCC) remained unclear. METHODS: The differentially expressed Annexins in RCC compared with normal controls were screened applying the TCGA database. The correlation of differentially expressed Annexins with clinical stages, grades and overall survival was analyzed to explore the clinical significance of Annexins in RCC. Then ANXA8 was selected and further stained in the discover and validation RCC cohort. The correlation of ANXA8 expression with clinical parameter was verified at the protein level. To explore the potential function of ANXA8, ANXA8 was knockdown in the RCC cell line and further analyzed using transcriptome and bioinformatic analysis. RESULTS: mRNA expression of ANXA1, ANXA2R, ANXA4, ANXA8, ANXA8L1 and ANXA13 were significantly upregulated in RCC compared with normal kidney tissues. In contrast, ANXA3 and ANXA9 mRNA expression was significantly downregulated. Higher expression of ANXA2R, ANXA8 and ANXA8L1 were correlated with worse overall survival, while lower expression of ANXA3, ANXA9 and ANXA13 were associated with worse clinical outcomes in RCC patients. We further demonstrated that ANXA8 expression was significantly increased in RCC compared with normal renal tissues at the protein level. And higher protein expression of ANXA8 was associated with higher clinical grades. Through the bioinformatics analysis and cell cycle analysis, we found knockdown of ANXA8 mainly influenced the cell cycle and DNA replication. The top ten hub genes consist of CDC6, CDK2, CHEK1, CCNB1, ORC1, CHEK2, MCM7, CDK1, PCNA and MCM3. CONCLUSIONS: Multiple members of Annexins were abnormally expressed and associated with the prognosis of RCC. The expression of ANXA8 was significantly increased in RCC and associated with poor prognosis. ANXA8 might influence the cell cycle and could be a potential biomarker and therapeutic target for RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Anexinas/genética , Anexinas/metabolismo , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Prognóstico , RNA Mensageiro/genética
10.
Hum Cell ; 36(5): 1729-1740, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37349657

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide. Expression of Annexin A9 (ANXA9), a member of the annexin A family, is upregulated in CRC. However, the molecular role of ANXA9 in CRC remains unknown. In the present study, we aimed to investigate the function of ANXA9 and to elucidate the mechanisms underlying its regulation in CRC. In this study, mRNA expression data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and GEPIA database, respectively. Kaplan-Meier analysis was used to analyze the survival rates. LinkedOmics and Metascape databases were used to explore the potential mechanisms of regulation of ANXA9 and to identify genes co-expressed with ANXA9. Finally, in vitro experiments were used to evaluate the function of ANXA9 and explore potential mechanisms. We found that ANXA9 expression was significantly elevated in CRC tissue and cells. High ANXA9 expression was associated with shorter overall survival, poorer disease specific survival, as well as with patient age, clinical stage, M stage, and OS events in CRC. Knockdown of ANXA9 inhibited cell proliferation, invasion, migratory potential, and cell cycle arrest. Mechanistically, functional analysis revealed that genes co-expressed with ANXA9 were mainly enriched in the Wnt signaling pathway. ANXA9 deletion suppressed cell proliferation via the Wnt signaling pathway, while Wnt activation reversed the effects of ANXA9. In conclusion, ANXA9 may promote CRC progression by regulating the Wnt signaling pathway and may be a potential diagnostic biomarker in the clinical management of CRC.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/genética , Via de Sinalização Wnt/genética , Proliferação de Células/genética , Anexinas/genética , Anexinas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , beta Catenina/metabolismo , Movimento Celular/genética
11.
J Pathol Clin Res ; 9(5): 378-390, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294149

RESUMO

Breast cancer (BCA) is one of the most prevalent cancers among women. Emerging evidence has revealed that Annexin A-9 (ANXA9) plays a crucial function in the development of some cancers. Notably, ANXA9 has been reported to be a new prognostic biomarker for gastric and colorectal cancers. However, its expression and biological function in BCA have not yet been investigated. Using online bioinformatics tools such as TIMER, GEPIA, HPA, and UALCAN, we predicted ANXA9 expression and its correlation with the clinicopathological characteristics of BCA patients. RT-qPCR and western blot were utilized to measure ANXA9 mRNA and ANXA9 protein expression in BCA patient tissues and cells. BCA-derived exosomes were identified by transmission electron microscopy. Functional assays were employed to evaluate the biological role of ANXA9 in BCA cell proliferation, migration, invasion, and apoptosis. A tumor xenograft in vivo model was utilized to assess the role of ANXA9 in tumor growth in mice. Bioinformatics and functional screening analysis revealed that ANXA9 was highly expressed in BCA patient tissues, with median ANXA9 expression 1.5- to 2-fold higher than in normal tissues (p < 0.05). RT-qPCR confirmed that ANXA9 expression in BCA tissues was around 1.5-fold higher than the adjacent normal tissues (p < 0.001). ANXA9 expression in different subtypes of BCA also showed a difference, and ANXA9 was found to be mostly significantly upregulated in luminal BCA relative to normal tissues or other histological subtypes (p < 0.001). Moreover, ANXA9 expression was elevated in different races, ages, clinical stages, node metastasis status, and menopause status groups relative to the normal group (p < 0.001). Furthermore, ANXA9 was found to be secreted by BCA tissue-derived exosomes and its expression was upregulated 1- to 7-fold in BCA cells treated with exosomes (p < 0.001), while its expression in MCF10A cells was not significantly altered by treatment with exosomes (p > 0.05). ANXA9 silencing induced a significant decrease of around 30% in the colony number of BCA cells (p < 0.01). The number of migrated and invaded BCA cells also decreased by around 65 and 68%, respectively, after silencing ANXA9 (p < 0.01). Tumor size was significantly reduced (nearly half) in the LV-sh-ANXA9 group relative to the LV-NC group in the xenograft model (p < 0.01), suggesting that ANXA9 silencing repressed tumor progression in BCA progression in vitro and in vivo. In conclusion, exosome-derived ANXA9 functions as an oncogene that facilitates the proliferation, migration, and invasiveness of BCA cells and enhances tumor growth in BCA development, which may provide a new prognostic and therapeutic biomarker for BCA patients.


Assuntos
Neoplasias da Mama , Exossomos , Humanos , Feminino , Animais , Camundongos , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Anexinas/genética , Anexinas/metabolismo , Movimento Celular/genética , Oncogenes , Neoplasias da Mama/patologia
12.
Proteins ; 91(9): 1191-1204, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37218507

RESUMO

The human genome codes for 12 annexins with highly homologous membrane-binding cores and unique amino termini, which endow each protein with its specific biological properties. Not unique to vertebrate biology, multiple annexin orthologs are present in almost all eukaryotes. Their ability to combine either dynamically or constitutively with membrane lipid bilayers is hypothetically the key property that has led to their retention and multiple adaptation in eukaryotic molecular cell biology. Annexin genes are differentially expressed in many cell types but their disparate functions are still being discovered after more than 40 years of international research. A picture is emerging from gene knock down and knock out studies of individual annexins that these are important supporters rather than critical players in organism development and normal cell and tissue function. However, they appear to be highly significant "early responders" toward challenges arising from cell and tissue abiotic or biotic stress. In humans, recent focus has been on involvement of the annexin family for its involvement in diverse pathologies, especially cancer. From what has become an exceedingly broad field of investigation, we have selected four annexins in particular: AnxA1, 2, 5, and 6. Present both within and external to cells, these annexins are currently under intensive investigation in translational research as biomarkers of cellular dysfunction and as potential therapeutic targets for inflammatory conditions, neoplasia, and tissue repair. Annexin expression and release in response to biotic stress appears to be a balancing act. Under- or over-expression in different circumstances appears to damage rather than restore a healthy homeostasis. This review reflects briefly on what is already known of the structures and molecular cell biology of these selected annexins and considers their actual and potential roles in human health and disease.


Assuntos
Anexina A1 , Humanos , Anexina A1/genética , Anexinas/genética , Eucariotos , Células Eucarióticas , Bicamadas Lipídicas
13.
Elife ; 122023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227431

RESUMO

Background: Many genes associated with asthma explain only a fraction of its heritability. Most genome-wide association studies (GWASs) used a broad definition of 'doctor-diagnosed asthma', thereby diluting genetic signals by not considering asthma heterogeneity. The objective of our study was to identify genetic associates of childhood wheezing phenotypes. Methods: We conducted a novel multivariate GWAS meta-analysis of wheezing phenotypes jointly derived using unbiased analysis of data collected from birth to 18 years in 9568 individuals from five UK birth cohorts. Results: Forty-four independent SNPs were associated with early-onset persistent, 25 with pre-school remitting, 33 with mid-childhood remitting, and 32 with late-onset wheeze. We identified a novel locus on chr9q21.13 (close to annexin 1 [ANXA1], p<6.7 × 10-9), associated exclusively with early-onset persistent wheeze. We identified rs75260654 as the most likely causative single nucleotide polymorphism (SNP) using Promoter Capture Hi-C loops, and then showed that the risk allele (T) confers a reduction in ANXA1 expression. Finally, in a murine model of house dust mite (HDM)-induced allergic airway disease, we demonstrated that anxa1 protein expression increased and anxa1 mRNA was significantly induced in lung tissue following HDM exposure. Using anxa1-/- deficient mice, we showed that loss of anxa1 results in heightened airway hyperreactivity and Th2 inflammation upon allergen challenge. Conclusions: Targeting this pathway in persistent disease may represent an exciting therapeutic prospect. Funding: UK Medical Research Council Programme Grant MR/S025340/1 and the Wellcome Trust Strategic Award (108818/15/Z) provided most of the funding for this study.


Three-quarters of children hospitalized for wheezing or asthma symptoms are preschool-aged. Some will continue to experience breathing difficulties through childhood and adulthood. Others will undergo a complete resolution of their symptoms by the time they reach elementary school. The varied trajectories of young children with wheezing suggest that it is not a single disease. There are likely different genetic or environmental causes. Despite these differences, wheezing treatments for young children are 'one size fits all.' Studying the genetic underpinnings of wheezing may lead to more customized treatment options. Granell et al. studied the genetic architecture of different patterns of wheezing from infancy to adolescence. To do so, they used machine learning technology to analyze the genomes of 9,568 individuals, who participated in five studies in the United Kingdom from birth to age 18. The experiments found a new genetic variation in the ANXA1 gene linked with persistent wheezing starting in early childhood. By comparing mice with and without this gene, Granell et al. showed that the protein encoded by ANXA1 controls inflammation in the lungs in response to allergens. Animals lacking the protein develop worse lung inflammation after exposure to dust mite allergens. Identifying a new gene linked to a specific subtype of wheezing might help scientists develop better strategies to diagnose, treat, and prevent asthma. More studies are needed on the role of the protein encoded by ANXA1 in reducing allergen-triggered lung inflammation to determine if this protein or therapies that boost its production may offer relief for chronic lung inflammation.


Assuntos
Asma , Hipersensibilidade , Animais , Camundongos , Asma/genética , Asma/diagnóstico , Estudo de Associação Genômica Ampla , Fenótipo , Sons Respiratórios/genética , Anexinas/genética
14.
Sci Rep ; 13(1): 6948, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117324

RESUMO

Hepatocellular carcinoma (HCC) is a highly lethal liver cancer with late diagnosis; therefore, the identification of new early biomarkers could help reduce mortality. We determine the tissue and plasma status of five annexins during hepatocarcinogenesis by diethylnitrosamine-induced cirrhosis-HCC. We found that Anxa5 was the earliest upregulated gene at week 12 after HCC initiation, while Anxa1 and Anxa2 were upregulated in advanced HCC stages (weeks 18 and 22). Furthermore, the protein level of Annexin A1, A2, A5 and A10 was increased from the early stages. Immunofluorescence and subcellular fractionation revealed Annexin A1, A2, and A5 in the cytoplasm and nuclei of tumor cells. Notably, increased plasma levels of Annexin A5 significantly (r2 = 0.8203) correlated with Annexin A5 levels in liver tissue from week 12 and gradually increased until week 22. Using the TCGA database, we found that the expression of ANXA2 (HR = 1.7, p = 0.0046) and ANXA5 (HR = 1.8, p = 0.00077) was associated with poor survival in HCC patients. In conclusion, we have identified Annexin A1 and A5 as potentially useful early biomarkers for poor prognosis in HCC patients.


Assuntos
Anexina A1 , Anexina A2 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Anexina A1/genética , Anexina A1/metabolismo , Anexina A5/metabolismo , Anexina A2/genética , Anexina A2/metabolismo , Anexinas/genética , Anexinas/metabolismo , Biomarcadores Tumorais/metabolismo
15.
Sci Rep ; 13(1): 1583, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709331

RESUMO

Liver hepatocellular carcinoma (LIHC) is one of the main cancers worldwide and has high morbidity and mortality rates. Although previous studies have shown that ANXA10 is expressed at low levels in LIHC tumor tissues, the biological function of ANXA10 in LIHC is still unclear. Therefore, we utilized TCGA, TIMER, GEPIA2, TISIDB, LinkedOmics, ssGSEA algorithms and CIBERSORT methodology to preliminarily evaluate the potential mechanism of ANXA10 in LIHC. In vitro experiments were used to further verify some functions of ANXA10. Consequently, we found that ANXA10 mRNA/protein expression was downregulated in LIHC tissue compared to normal tissue. ANXA10 was significantly linked with clinicopathological features, immunocytes, multiple cancer-related pathways, m6A modification and a ceRNA network. A three-gene prognostic signature rooted in ANXA10-related immunomodulators was determined and found to be an independent prognostic predictor. A nomogram was constructed to predict survival with good accuracy. Additionally, in vitro trials revealed that ANXA10 upregulation inhibited LIHC cell proliferation and migration. This study reveals that ANXA10 may serve as a prognostic marker and promising therapeutic target in LIHC clinical practice through various biologic functions.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/genética , Biologia Computacional , Biomarcadores , Anexinas/genética
16.
Anim Biotechnol ; 34(4): 1413-1421, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35189072

RESUMO

Annexin A2 (ANXA2) is a member of the A subfamily of a multifunctional calcium dependent membrane phospholipid binding protein family. The mRNA expression of ANXA2 is consistent with ovary function and egg laying in chickens. In this study, six nucleotide polymorphisms in the key promoter region of chicken ANXA2 gene (-2861 bp to -1394 bp), i.e.,: g.-2337 indel (GT), g.-2255 C > T, g. -2248 A > G, g.-2188 A > G, g.-2169 G > A, g.-2160 A > C, were identified. Their distributions in populations of Xinyang Brown, Recessive White Rock, Wenchang and Wenshang Barred chickens were analyzed. In the Recessive White Rock chicken population, CAA, CAG and TGG were three major haplotypes. Association analysis indicated that the individuals with diplotype TGG/TGG laid more eggs at 32 weeks, and the individual with diplotype CAG/TGG laid at the earlier age. Luciferase activity assay showed that mutation from C to T at -2255 increased trascriptional activity of chicken ANXA2, which is consistent with its effect on egg laying traits.


Assuntos
Galinhas , Nucleotídeos , Feminino , Animais , Galinhas/genética , Óvulo , Regiões Promotoras Genéticas/genética , Anexinas/genética , Polimorfismo de Nucleotídeo Único/genética
17.
Pathobiology ; 90(2): 94-103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35780773

RESUMO

INTRODUCTION: Urothelial carcinoma (UC) is a common type of malignant disease, but little is known about the diagnostic and prognostic markers of upper urinary tract urothelial cancer (UTUC) because of its rarity. To clarify the significance of ANXA10 in UTUC, we studied ANXA10 expression with immunohistochemistry (IHC). METHODS: The expression of ANXA10 was analyzed in the upper and lower urinary tract of UC by IHC in combination with The Cancer Genome Atlas (TCGA) data analysis. The association between ANXA10 expression and representative cancer-related molecules was also evaluated. RESULTS: ANXA10 expression was weak in normal upper tract urothelium but was positive in 39/117 (33%) UTUCs. ANXA10 was more frequently positive in tumors with pure UC (36%, p < 0.05), papillary morphology (50%, p < 0.01), low grade (G1/2: 57%, p < 0.01), and pTa/is/1 stage (55%, p < 0.01) than in those with histological variants (0%), nodular morphology (9%), G3 (16%), and pT2/3/4 (13%), respectively. ANXA10-positive patients showed better cancer-specific survival and progression-free survival than ANXA10-negative patients (p < 0.05). IHC showed that ANXA10 positivity was detected more in cases with the low expression of TP53 (p < 0.01) and Ki-67 labeling index <20% (p < 0.01). In TCGA dataset of muscle-invasive bladder cancer, higher ANXA10 expression correlated with papillary morphology, lower grade/stage, luminal papillary subtype, wild-type TP53, and FGFR3 gene mutation. CONCLUSION: We revealed that ANXA10 expression was increased during carcinogenesis and was observed more frequently in papillary UC of lower grade and stage. However, its expression decreased as cancer progressed. Therefore, the ANXA10 expression in UTUC might be clinically useful for decision-making.


Assuntos
Carcinoma de Células de Transição , Neoplasias Renais , Neoplasias Ureterais , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Neoplasias Renais/genética , Neoplasias Ureterais/genética , Neoplasias Ureterais/metabolismo , Neoplasias Ureterais/patologia , Urotélio/metabolismo , Urotélio/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Anexinas/genética , Anexinas/metabolismo
18.
Biochem Genet ; 61(2): 597-614, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36008700

RESUMO

Circular RNAs (circRNAs) can function as functional molecules in hepatocellular carcinoma (HCC). Herein, circRNA superoxide dismutase 2 (circSOD2) was researched in HCC progression and immune system. The real-time polymerase chain reaction (qRT-PCR) was used for quantification of circSOD2, microRNA-497-5p (miR-497-5p) and Annexin A11 (ANXA11). Cell assays were performed by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) and colony formation assays for proliferation, flow cytometry for apoptosis and cell cycle, wound healing assay for migration and transwell assay for migration/invasion. ANXA11 and metastatic protein levels were measured by western blot. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to analyze target binding. CD8+ T cell immunity was assessed by Immunohistochemistry (IHC) assay, and the effect of circSOD2 on programmed cell death 1 (PD-1) immune checkpoint inhibitors (anti-PD-1) therapy was evaluated by mice xenograft assay. CircSOD2 was upregulated in HCC tissues and cells. Knockdown of circSOD2 resulted in HCC cell growth inhibition, apoptosis promotion, cell cycle arrest and metastasis suppression. Mechanically, circSOD2 promoted HCC development by acting as a miR-497-5p sponge and miR-497-5p played a tumor-inhibitory role in HCC cells by targeting ANXA11. Moreover, circSOD2 induced upregulation of ANXA11 expression by interacting with miR-497-5p. Also, the promoting effects of circSOD2 on immune evasion and anti-PD-1 resistance were related to miR-497-5p/ANXA11 axis. This study elucidated the pivotal function of circSOD2 in HCC progression and immunosuppression by mediating miR-497-6p/ANXA11 axis. CircSOD2/miR-497-5p/ANXA11 axis was a novel view of circRNA research in HCC.


Assuntos
Anexinas , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Circular , Animais , Humanos , Camundongos , Anexinas/genética , Anexinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Evasão da Resposta Imune , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo
19.
Biochem Genet ; 61(3): 1113-1127, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36451051

RESUMO

Previous studies have proven that long intergenic non-coding RNA regulator of reprogramming (Linc-ROR) plays opposing roles in different cancer types. This work intended to investigate its functions and underlying mechanisms in gastric carcinoma (GCa) progression. RT-qPCR was utilized for gene expression measurement. GCa cell viability, apoptosis, migration, and invasion were detected by functional assays, including CCK-8, flow cytometry, and Transwell assays. ChIP assay and Dual-luciferase reporter assay were utilized to affirm the associations between genes. Linc-ROR expression dramatically declined in GCa tissues and cell lines. Linc-ROR upregulation suppressed GCa cell proliferation, migration, and invasion but accelerated GCa cell apoptosis. As for Linc-ROR-associated molecular mechanisms in GCa, SOX2 associated with Linc-ROR promoter region to activate Linc-ROR transcription in GCa cells; Linc-ROR upregulated ANXA10 level in GCa cells by competitively binding to miR-580-3p. As revealed by rescue assays, Linc-ROR-induced inhibition on malignant biological behaviors of GCa cells could be partially abated by ANXA10 deletion or miR-580-3p upregulation. SOX2-activated Linc-ROR serves as a cancer suppressor to restrain GCa progression in vitro via the miR-580-3p/ANXA10 pathway, suggesting a promising diagnostic and therapeutic target for GCa patients.


Assuntos
Carcinoma , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Anexinas/genética , Anexinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Regulação para Cima , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
20.
Arch Oral Biol ; 144: 105569, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36265396

RESUMO

Oral squamous cell carcinoma (OSCC) can disturb oral function and quality of life and is associated with poor survival, likely due to the development of cervical lymph node metastases. Epithelial-mesenchymal transition (EMT) is a process in which cells acquire molecular alterations that facilitate cell motility and invasion, and has been associated with tumor metastasis. EMT changes also play important roles in the induction of lymph node metastasis in OSCC. GATA6 is known as the earliest marker of the primitive endoderm lineages. GATA6 inhibits de-differentiation and EMT in human pancreatic ductal adenocarcinoma cells and promotes EMT. However, in OSCC, the expression and function of GATA6 in EMT and lymph node metastasis remains unclear. Therefore, this study aimed to clarify the targets of GATA6 in OSCC cells and whether the change in GATA6 expression affects EMT in OSCC cells, as well as the association between GATA6 and lymph node metastasis. The results showed that GATA6 knockdown OSCC cells promoted EMT and increased lymph node metastasis compared with control cells, whereas the overexpression of GATA6 inhibited the induction of EMT and reduced lymph node metastasis. In addition, annexin A10 (ANXA10) which is the largest type of Ca2+-regulated phospholipid-binding protein in eukaryotic cells was detected as a target gene for GATA6 and ANXA10 suppressed Vimentin expression in EMT in OSCC. Therefore, the GATA6/ANXA10 cascade may be a potential therapeutic approach for the treatment of lymph node metastases in OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/patologia , Transição Epitelial-Mesenquimal/genética , Metástase Linfática , Carcinoma de Células Escamosas de Cabeça e Pescoço , Qualidade de Vida , Anexinas/genética , Linhagem Celular Tumoral , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...